Larger Counting Example

Decimal (base 10)

 

Binary (Base 2)

(Base 4)

Octal (Base 8)

Hexadecimal (Base 16)

0

 

0

0

0

0

1

 

1

1

1

1

2

 

10

2

2

2

3

 

11

3

3

3

4

 

100

10

4

4

5

 

101

11

5

5

6

 

110

12

6

6

7

 

111

13

7

7

8

 

1000

20

10

8

9

 

1001

21

11

9

10

 

1010

22

12

A

11

 

1011

23

13

B

12

 

1100

30

14

C

13

 

1101

31

15

D

14

 

1110

32

16

E

15

 

1111

33

17

F

16

 

10000

40

20

10

17

 

10001

41

21

11

18

 

10010

42

22

12

19

 

10011

43

23

13

20

 

10100

50

24

14

21

 

10101

51

25

15

22

 

10110

52

26

16

23

 

10111

53

27

17

24

 

11000

60

30

18

25

 

11001

61

31

19

26

 

11010

62

32

1A

27

 

11011

63

33

1B

28

 

11100

70

34

1C

29

 

11101

71

35

1D

30

 

11110

72

36

1E

31

 

11111

73

37

1F

32

 

100000

80

40

20

The Really Easy Stuff, part 1: Binary to Octal

10111012 converts to ?8

Divide the number into blocks of three, starting from the right. If you don’t have enough numbers, add 0s to the left.

001 011 101

Put a short powers-of-two number line above each of the blocks of three; remember, the 1s and 0s always go under the powers-of-two number line.

4 2 1

4 2 1

4 2 1

0 0 1

0 1 1

1 0 1

Add the value under the successes (1s).

4 2 1

4 2 1

4 2 1

0 0 1

0 1 1

1 0 1

1

3

5

There’s our number! 10111012 converts to 1358